Fourth Grade

Physical Sciences

- 1. Electricity and magnetism are related effects that have many useful applications in everyday life. As a basis for understanding this concept:
 - a. *Students know* how to design and build simple series and parallel circuits by using components such as wires, batteries, and bulbs.
 - b. *Students know* how to build a simple compass and use it to detect magnetic effects, including Earth's magnetic field.
 - c. *Students know* electric currents produce magnetic fields and know how to build a simple electromagnet.
 - d. *Students know* the role of electromagnets in the construction of electric motors, electric generators, and simple devices, such as doorbells and earphones.
 - e. Students know electrically charged objects attract or repel each other.
 - f. *Students know* that magnets have two poles (north and south) and that like poles repel each other while unlike poles attract each other.
 - g. Students know electrical energy can be converted to heat, light, and motion.

Life Sciences

- 2. All organisms need energy and matter to live and grow. As a basis for understanding this concept:
 - a. Students know plants are the primary source of matter and energy entering most food chains.
 - b. *Students know* producers and consumers (herbivores, carnivores, omnivores, and decomposers) are related in food chains and food webs and may compete with each other for resources in an ecosystem.
 - c. *Students know* decomposers, including many fungi, insects, and microorganisms, recycle matter from dead plants and animals.
- 3. Living organisms depend on one another and on their environment for survival. As a basis for understanding this concept:
 - a. Students know ecosystems can be characterized by their living and nonliving components.
 - b. *Students know* that in any particular environment, some kinds of plants and animals survive well, some survive less well, and some cannot survive at all.
 - c. *Students know* many plants depend on animals for pollination and seed dispersal, and animals depend on plants for food and shelter.
 - d. Students know that most microorganisms do not cause disease and that many are beneficial.

Earth Sciences

- 4. The properties of rocks and minerals reflect the processes that formed them. As a basis for understanding this concept:
 - a. *Students know* how to differentiate among igneous, sedimentary, and metamorphic rocks by referring to their properties and methods of formation (the rock cycle).

- b. *Students know* how to identify common rock-forming minerals (including quartz, calcite, feldspar, mica, and hornblende) and ore minerals by using a table of diagnostic properties.
- 5. Waves, wind, water, and ice shape and reshape Earth's land surface. As a basis for understanding this concept:
 - a. *Students know* some changes in the earth are due to slow processes, such as erosion, and some changes are due to rapid processes, such as landslides, volcanic eruptions, and earthquakes.
 - b. *Students know* natural processes, including freezing and thawing and the growth of roots, cause rocks to break down into smaller pieces.
 - c. *Students know* moving water erodes landforms, reshaping the land by taking it away from some places and depositing it as pebbles, sand, silt, and mud in other places (weathering, transport, and deposition).

Investigation and Experimentation

- 6. Scientific progress is made by asking meaningful questions and conducting careful investigations. As a basis for understanding this concept and addressing the content in the other three strands, students should develop their own questions and perform investigations. Students will:
 - a. Differentiate observation from inference (interpretation) and know scientists' explanations come partly from what they observe and partly from how they interpret their observations.
 - b. Measure and estimate the weight, length, or volume of objects.
 - c. Formulate and justify predictions based on cause-and-effect relationships.
 - d. Conduct multiple trials to test a prediction and draw conclusions about the relationships between predictions and results.
 - e. Construct and interpret graphs from measurements.
 - f. Follow a set of written instructions for a scientific investigation.